
Journal of Computer Languages 62 (2021) 101010

H
f
S
T

A

K
V
O
I
U

1

n
t
e
o
u
a
t

E
f
r
i
c
c
v
a
a
p

r
s

(

h
R
A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

ow end-user programmers forage in online repositories? An information
oraging perspective
andeep Kaur Kuttal ∗, Se Yeon Kim, Carlos Martos, Alexandra Bejarano
andy School of Computer Science, University of Tulsa, Tulsa, OK, USA

R T I C L E I N F O

eywords:
ariants
nline repositories

nformation Foraging Theory
ser studies

A B S T R A C T

End-user (non-professional) programmers often opportunistically create programs, they evaluate various
alternatives and reuse existing code by merging components from it or modifying it to suit the context or
problems of their programs. Finding and evaluating which program variants to reuse code from is challenging
because the searching mechanisms within online repositories are not optimal. To understand the reuse
behavior of end-user programmers and to provide implications on how to further support them, we conducted
an empirical study in which eight end-user programmers foraged in online repositories, specifically App
Inventor Gallery and File Exchange. Using Information Foraging Theory, we qualitatively analyzed the end-user
programmers’ behavior and focused on not only program variants from a single source, but also on similar
variants from various sources developed over time and by different authors. This analysis revealed new cue
types and strategies specific to novice and experienced end-user programmers as they foraged between- and
within-variants.
. Introduction

Programming is a creative task and is generally exploratory in
ature, allowing programmers to opportunistically create programs
hrough code reuse by ‘‘gluing’’ together components or modifying
xisting code to suit a new context or problem [1,2]. This behavior is
ften seen in end-user (non-professional) programmers (EUPs) as they
se trial-and-error to create code opportunistically or incrementally,
nd rarely follow the standard software lifecycle [3]. One way to enable
his behavior of code reuse is through online repositiories.

Online repositories contain programs and their variants created by
UPs e.g., File Exchange [4] for MATLAB [5], App Inventor Gallery [6]
or App Inventor [7], and Scratch repository [8] for Scratch [9]. Past
esearch has shown that 43% of programs submitted to an online repos-
tory were variations of previously submitted programs [10]. These
ode variants are created because of the provision of creating program
lones or allowing the use of subprograms [11]. Although EUPs may
iew their programs as ‘‘throw-away’’, their code is often long-lived
nd, in many cases, is reused by other EUPs [12,13]. However, within
n online repository, finding and reusing appropriate variants of a
rogram is a challenging task.

The challenge lies with EUPs’ information seeking behavior, which
equires a higher cognitive effort for EUPs and may not be fully
upported by the tools provided within online repositories. During

∗ Corresponding author.
E-mail addresses: sandeep-kuttal@utulsa.edu (S.K. Kuttal), seyeon-kim@utulsa.edu (S.Y. Kim), carlos-martos@utulsa.edu (C. Martos), alb146@utulsa.edu

A. Bejarano).

information seeking for a reuse task, EUPs (1) forage and differenti-
ate between contextually similar variants, (2) localize the appropriate
variant, and (3) evaluate the context compatibility of the selected vari-
ant’s code snippets to the desired program variant. Furthermore, the
information-seeking behavior differs between novice and experienced
programmers [14]. To understand the information seeking behavior of
both novice and experienced EUPs, we posit that Information Foraging
Theory (IFT) – a theory on information-seeking behavior – can help
us understand how EUPs forage for reusable code among program
variants.

In IFT, a predator (EUPs) forages for prey (e.g., program variant
or code snippet) by following cues (e.g., labels on links) in patches
(e.g., web pages, IDEs). IFT has been studied and applied in connection
with the process of ‘‘foraging’’ by web users [15–18] and navigat-
ing by professional programmers while debugging programs [19–25].
Additionally, IFT has been used to study the debugging behavior of
EUPs [26,27] and the reuse behavior of programmers when foraging
program variants from the same project [28,29]. However, IFT is
unexplored in the domain of EUPs reusing code in online repositories.

In this paper, we explore the utility of IFT to understand the
reuse behavior of novice and experienced EUPs in online repositories.
We conducted an empirical study of novice and experienced EUPs
and qualitatively analyzed their information-seeking behavior. Further-
more, this paper is an extension of our shorter research paper [30]
ttps://doi.org/10.1016/j.cola.2020.101010
eceived 27 June 2020; Received in revised form 26 September 2020; Accepted 1
vailable online 9 November 2020
590-1184/© 2020 Elsevier Ltd. All rights reserved.
November 2020

https://doi.org/10.1016/j.cola.2020.101010
http://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2020.101010&domain=pdf
mailto:sandeep-kuttal@utulsa.edu
mailto:seyeon-kim@utulsa.edu
mailto:carlos-martos@utulsa.edu
mailto:alb146@utulsa.edu
https://doi.org/10.1016/j.cola.2020.101010

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

R

and presents (1) a new research question (RQ2) regarding integration
of variants, (2) further analysis of the study transcripts introducing
new cue types and strategies, (3) a comparison of novice and experi-
enced EUPs, and (4) implications for IFT theory. The primary research
questions we investigated were:

RQ1: What are the types of information which help EUPs identify
variants that can be reused?

• Between-variant foraging : How do EUPs forage between variants of
an artifact to find and evaluate a potential variant?

• Within-variant foraging : How do EUPs forage within a specific
variant to find and evaluate a potential patch?

Q2: How do EUPs integrate parts of the program across variants?
This paper is structured as follows: Section 2 describes the back-

ground on variations and IFT, Section 3 describes our applied method-
ology, Section 4 presents our results organized in accordance with the
reuse model of variants, Section 5 discusses the timeline of participants’
behavior and compares cues used by novice and experienced EUPs,
Section 6 provides implications for theory and tools, Section 7 describes
threats to validity, Section 8 presents related works affiliated with
code reuse in online repositories and IFT in software engineering, and
Section 9 consists of our conclusion.

2. Background

In this section, we discuss the background on variations and infor-
mation foraging theory.

2.1. Variations

Variations are ‘‘when multiple related implementations exist either
serially or in parallel’’ and variants are ‘‘syntactically valid program[s]
that occurs together with similar, related programs in a group’’ as de-
fined by Ragavan et al. [28]. Users can access and modify the contents
of these variants to create a newly modified program according to
their desired specifications. For example, in File Exchange, a MATLAB
seven-segment display project has several variations that were created
over time and by different developers. The original project and each
variation of that project is referred to as a variant that can be further
reused. These variants are often stored by EUPs and made available to
other EUPs within online repositories.

2.2. Information foraging theory

Pirolli and Card derived Information Foraging Theory (IFT) from
optimal foraging theory [31,32]. IFT models how EUPs (predators)
follow scents emanated from cues to track program variants (prey).
Cues are information features, such as labels of web links, which give
users direction of where to go. These elements are found in information
sources which, in the context of this experiment, include variants
and patches (such as the programming environment, file explorers,
and web pages). Predators optimize their foraging behavior constructs
based on the perceptions/estimates of the value and cost of a patch,
which determines their navigations; according to IFT, this is known
as scent construct [32]. Predators also modify their environment for
enrichment [32,33].

IFT has been used to examine and explain the behavior of users as
they sift through information on the web [15–18] and for developing
models to predict user navigations through the web [15,17]. These IFT
models predict user behavior in close precision to the strength of a scent

trail in a web environment.

2

3. Methodology

To understand the reuse behavior of novice and experienced EUPs
in online repositories, we conducted further analysis of our previous
empirical study of EUPs reusing program variants in two different
environments that are popular among EUP communities, App Inventor
Gallery and File Exchange [30]. In this study, participants were given
two information-seeking tasks that allowed us to observe cues and
strategies used while foraging between- and within-variants. In this
section, we describe our applied methodology for the study.

3.1. Environment

3.1.1. App Inventor Gallery (AIG)
App Inventor Gallery is an online repository of App Inventor ap-

plications. The App Inventor environment is a software development
platform designed for mobile Android programs. We specifically chose
App Inventor Gallery for our study because: (1) As of 2020, the App
Inventor community has 8.2 million registered users from 195 countries
and about 230,000 active weekly users that in all have used App
Inventor to build 34 million apps [7]. (2) App Inventor is popular with
the sub-community of EUPs such as formal and informal educators,
government and civic employees and volunteers, designers and product
managers, hobbyists and entrepreneurs, and researchers [7]; which
make up our participant selection pool. (3) App Inventor is a visual
language that is easy to use and allows users of varied experiences to
create apps. (4) App Inventor allows users to share their apps with other
users.

The arrows in Fig. 1 show transitions of a user’s foraging in AIG. The
user begins searching (enrichment) for variants in a search bar using
keywords and a list of relevant variants are returned.

Opening a variant exhibits to the user three patches namely, the
designer, the code editor, and the emulator (from left to right in Fig. 1).
The designer patch allows the user to design the interface of a mobile
app, the code editor allows implementation of the app using blocks,
and the emulator displays the output (after execution) of the created
app.

3.1.2. File Exchange (FE)
File Exchange is an online repository of MATLAB applications. We

specifically chose the File Exchange repository for our study because:
(1) MATLAB is a popular scientific and engineering programming lan-
guage for EUPs at universities and companies [34]. (2) Our university
was actively teaching and using MATLAB, making it easier to find
participants with experience in MATLAB. (3) MATLAB allows users to
share their code with other users.

Similar to AIG, arrows in Fig. 2 indicate transitions of a user
foraging in FE with a noted difference that a list of patches, in which
a user can select, will be returned upon variant selection. With the
keyword-based search, a user is able to find list of variants. On selecting
a variant, a user can download a list of patches (files) and then open
the individual patches in the MATLAB IDE.

3.2. Participants

Since EUPs are programmers who have no formal professional soft-
ware engineering training, we recruited eight non-Computer Science
students from the University of Tulsa. We recruited these students by
sending emails and posting flyers within the Engineering and Natural
Sciences department as many of the students within that department
have some programming experience. Students then voluntarily chose
to respond to our postings and participate in our study and were com-
pensated with a $20 gift card. Participants were selected after filling
out a background questionnaire to screen for EUPs. The demographics

of the participants are shown in Table 1.

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

w
p
E

Fig. 1. App Inventor Repository with variants and patches.
Fig. 2. File Exchange Repository with variants and patches.
Table 1
Participant Demographics.

Participant Age Gender Education level Major Programming experience in Programming experience

P1 19–23 Female Sophomore Mechanical Engineering App Inventor - None Less than a year
P2 30–40 Male PhD or similar Mechanical Engineering App Inventor - None Greater than 4 years
P3 19–23 Male Junior MIS App Inventor - None 3 years
P4 24–29 Male Masters Geophysics App Inventor - None 2 years
P5 24–29 Female Masters Geophysics MATLAB - Greater than 4 year Greater than 4 years
P6 30–40 Male PhD or similar Mechanical Engineering MATLAB - Greater than 4 years Greater than 4 years
P7 24–29 Male Masters Chemical Engineering MATLAB - 2 years Less than a year
P8 19–23 Male Masters Electrical Engineering MATLAB - 2 years 2 years
To qualitatively observe participants’ foraging behaviors in-depth,
e used a small but more generalizable population by dividing the
articipants into two groups: App Inventor Gallery (AIG) and File
xchange (FE). We used AIG and FE participants to categorize novice
3

and experienced end-user programmers respectively and to understand
how experience can be a factor in information-seeking behaviors [14].
While all participants had some experience with programming, AIG
participants were novice as they had no experience programming in

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010
App Inventor. Conversely, FE participants were experienced MATLAB
programmers as they had 2 or more years of experience programming
in MATLAB as shown in Table 1.

3.3. Study design

Prior to the study, participants were asked to fill out a background
questionnaire. AIG participants completed an additional short tuto-
rial on App Inventor. We then conducted a formative lab study on
the participants using think-aloud protocols [35] asking participants
to vocalize their thoughts and feelings when performing their tasks.
Participants were given 50 min to complete two tasks. During the study,
a lead researcher observed participants within the same room and the
participants’ verbalizations and on-screen actions were recorded using
screen-capture software Morae [36] (signed consent from participants
was acquired beforehand). Thus, we hoped to gain insights into par-
ticipants’ thought processes and barriers they faced while exploring,
understanding, and selecting between- and within-variants.

The study was followed by a retrospective interview conducted
by the lead researcher who had been observing the tasks. We used
interviews to elicit participants’ experiences and knowledge, while the
participants foraged for variants and patches. During the interview,
we played back recordings of their actions and verbalizations to seek
insights into participants’ behavior. Furthermore, the interviews helped
us triangulate hence, increased the generalizability of our lab find-
ings [37]. The retrospective interview results were also audio recorded
with screen capture. Both the study and retrospective interview re-
quired us to administer the study participants on an individual basis
with an observer.

3.4. Task context

Two tasks were chosen to observe cues and strategies that partici-
pants used while foraging between- and within-variants. To facilitate
between-variant foraging behavior, we selected tasks based on two
factors: popularity of projects and late-appearance of variant in the
search results to enable more foraging. The tasks were designed such
that by using common keywords, the intended project would appear
on the second or third page of the query results. Task 1 aimed to find
a project (destination variant) to integrate code into. Task 2 aimed to
find another project (source variant) to integrate code from. While the
tasks had multiple solutions, the ideal solution for Task 1 was to find a
project that needed no modification. The ideal solution for Task 2 was
to find and integrate part(s) of the code of a project into the previous
project found in Task 1.

Task 1: The first task was designed to observe between- and within-
variant foraging.

AIG participants were given a scenario of Bob who was visually
impaired and were instructed to find a project (variant) for Bob with
the specifications to ‘‘speak aloud the current date and time when he
manually selects a button ‘Time’’.’ AIG participants were given a task
with this scenario as it had a realistic and imaginative context [38] to
motivate and maximize the engagement of these novice EUPs.

Meanwhile, since all FE participants were experienced MATLAB
programmers, they were not given a scenario. Instead, they were told
that ‘‘[while] working with signals or fields that vary in time, it is often
useful to visualize those fields using animations’’ and were asked to find
a project (variant) that had a time-varying graph which allows users ‘‘to
input a 1- or 2-dimensional time-dependent variable’’ and ‘‘the option
to save results as a video file for later playback when MATLAB isn’t
available’’.

Task 2: Once the participants felt they finished Task 1, they moved
onto Task 2. The second task was designed for between- and within-
variant foraging as well as integration by having participants, ideally,

find another project to integrate into the project found in Task 1.

4

AIG participants continued the scenario from Task 1 and were asked
to change the previous program to allow ‘‘voice commands instead
of manual selection’’ because Bob had ‘‘difficulty accessing the button
widget’’.

Meanwhile, FE participants were asked ‘‘to use the videos [from Task
1] to extract differences between two plots’’ because the ‘‘version of
MATLAB [software] has changed’’.

3.5. Qualitative analysis

To correctly identify cues associated with participants’ foraging
behaviors, we qualitatively coded the data by first using cues estab-
lished by previous works [28,39]. For behaviors/cues not described
by previous works, we created new cues to code the phenomena
exhibited by participants in the study. We segmented the transcripts
of participants’ think-aloud videos into 30-second segments (multiple
cues can be in one segment). To mitigate for possibly overlooked or
incorrectly defined cues/behaviors, two researchers coded the tran-
scripts of participants’ actions. We then used the Jaccard’s measure
to calculate inter-rater reliability [40] and achieved 89% agreement.
After an agreement was made, one researcher coded the rest of the
transcripts of participants’ verbalization and actions. The code set used
for the study can be found in Table 2.

4. Results

To demonstrate the resulting behavior of our participants while
forging we made use of the reuse model from previous research [28,
41]. Rosson & Carroll modeled programmers’ reuse of a single variant
of source code [41]. The programmers find and implement code from
one ‘‘usage context’’ (reusable code) to complete their current task
‘‘current context’’ (integrating the reusable code). Ragavan et al. [28]
extended the model to accommodate multiple variants. Fig. 3 out-
lines the Reuse Model of variants into three major stages: (1) finding
and evaluating the current context, (2) finding and evaluating the
usage context, and (3) the integration [28]. Programmers can return
(backtrack) to variants or patches at any time while foraging to reuse
variants/patches. While Ragavan et al. focused on variants developed
from a single source over time, we focused on similar variants from
various sources developed over time (temporally) and space (spatially
i.e. by different authors). We also modified the reuse model to include
Overall Strategies.

In this section, we discuss the overall strategies (Section 4.1) used
throughout the reuse model (Fig. 3). Table 3 provides the definitions
for each component of the reuse model and the corresponding RQs. We
address RQ1 by investigating the current context and usage context of
variants and patches (Sections 4.2 and 4.3) to determine the types of
information that help EUPs identify variants that can be reused. Specif-
ically, RQ1 (a) was investigated by observing the participants’ behavior
between-variant foraging for variants while they find a destination
variant (Section 4.2.1) and then evaluate it (Section 4.2.2); similarly,
while they find a source variant and evaluate it (Section 4.3.1). RQ1
(b), was investigated by observing participants’ behavior within-variant
foraging for patches while they find a destination patch (Section 4.2.3)
and then evaluate it (Section 4.2.4); similarly, while they find a source
patch and evaluate it (Section 4.3.2). We also address RQ2 by exam-
ining the integration of program code across variants (Section 4.4) to
determine how EUPs integrate parts of a program across variants.

4.1. Overall strategies

Bridging Gaps in Knowledge: Participants gained information and con-
tinuously reassessed their knowledge base for what they did or did not
know (gaps in knowledge [42]) while foraging between- and within-
variants, which changed the participants’ goal or strategy. We call this
behavior Bridging Gaps in Knowledge for Strategy and Goal, respectively.

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

c
P
k
(
t
r
e

Table 2
This codeset describes the cue-types, operations, navigation and enrichment associated with participants’ actions.

Code Description

Cue-Types

Visual Cues based on graphics
Text: Filename Filename cues
Text: Description Description-inspired cues
Author Author-name-inspired cues
Quality The amount of functions a variant performs
Rating Cues based on the rating of a variant
Timestamps Dates which mark variants e.g., last update, creation date
Familiarity Cues based on how a user recognizes the patch or variant
Output Output-inspired cues
Code Cues from the source code, e.g., function names, block labels
Documentation: Internal Document-inspired cues native to the repositories and their contents
Documentation: External Document-inspired cues from other sources outside the repositories
Code status Cues which describe or display errors in the code non-intrusively

Operation

Comparison: Variant Compare two variants
Comparison: Patches Compare two patches

Navigations

Between Variant Navigation All cues which guided between-variant navigation
Between Patch Navigation All cues which guided within-variant navigation

Enrichment

Internal Search Marked with cues relating to internal search engines (FE, AIG)
External Search Marked with cues relating to external search engines (Google, Yahoo!)
Between Variant Enrichment All other cues which guided enrichment
Fig. 3. Reuse model.
Source: Adapted from
Ragavan [28].
When participants’ gaps in knowledge changed their strategy, we
haracterized it as Bridging Gaps in Knowledge for Strategy. For example,
1 set a goal to find a variant that satisfied Task 1 and assessed her
nowledge then used keywords from Task 1 in her search criteria
Keywords From the Task an enrichment strategy later mentioned in
his study) to find the variant. However, after using the strategy, P1
eassessed her knowledge base with the results of her enrichment strat-
gy and realized a gap in knowledge that her strategy was inefficient as
5

she commented ‘‘it is too general.’’ To bridge the gap of knowledge for
strategy, she changed to a navigational strategy by using Recency and
commented she ‘‘[thought] it was one of the more popular apps or more
recently chosen.’’ However, after not seeing the results she wanted, P1
went back to an enrichment strategy, this time Filtering Search Results
by using quotation marks (a Google filter shortcut) commenting ‘‘that
[quotation marks to filter] kind of tricks would work here [in AIG]’’.

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

t
t
b
T
P
r
t

Table 3
Reuse model components and their definitions.

Reuse model components Definitions

Contexts

Current context The source which contains reusable code

Usage context Destination, the location where reusable code
needs to be integrated

Overall strategies

Bridge gaps in Knowledge Users changed their goals and strategies based on
the information gained

Comparing source & Destination Users compared source and destination
variant/patch to evaluate source variant/patch

RQ1

Between-variants

Find destination variant Identify the variant base for future integration

Evaluate destination variant Determine whether the variant base is within the
context of the current task

Find source variant Identify the variant that contains reusable code

Evaluate source variant Determine whether the selected variant is usable
within the context of the current task

RQ2

Within-variants

Find destination patch Identify the patch base for future integration

Evaluate destination patch Determine whether the patch base is within the
context of the current task

Find source patch Identify the patch that contains reusable code

Evaluate source patch Determine whether the selected patch is usable
within the context of the current task

RQ3 Integrate Integrate reusable code into variant/patch base
r
i
t
o
m
w
A
g
s
w

r

When participants’ gaps in knowledge changed their goal, we call
his Bridging Gaps in Knowledge for Goal. This is evident as P7 kept
he same strategy but changed his goal after assessing his knowledge
ase for gaps. P7’s goal was to find a variant (project) that satisfied
ask 1. However, after using enrichment strategies in File Exchange,
7 reassessed his knowledge base and realized his search results only
eturned plotting graphs. He noted the gap in knowledge as he men-
ioned ‘‘could it be two different downloads that I’m looking for?’’ Thus,

to bridge the gap in knowledge for his goal, P7 changed his goal from
finding one app to finding two apps and continued using an enrichment
strategy to find a variant (project) that can ‘‘take to media control. . . to
record’’. This is similar to the behavior found by Lawrance et al. [23]
in which the goals of their participants changed while debugging .
Comparing Source and Destination: Comparing source and destination
variants/patches occurred anytime the participants evaluated a source
variant/patch. FE participants did compare between source and des-
tination patches, while AIG participants did not since they persisted
with the destination variant/patch they chose and did not search for
different variants/patches.

After FE participants obtained the desired source patch, they had
three choices to make: (1) keep the destination variant/patch, (2)
switch between the source and destination variant/patch, (3) or aban-
don either the source or destination variant/patch. To make these three
choices, FE participants compared the variants/patches either mentally
in their head or physically on screen. For example, after evaluating a
destination variant mentally, P8 compared the destination variant and
source patch and then stated ‘‘this is exactly what I am looking for ’’ and
moved on to Task 2. Other participants compared variants physically
such as when P5 compared combinations of variants and patches (see
Fig. 4) next to each other. While choosing between the three choices,
FE participants reevaluated the destination patch and better understood
the source patch through comparison.

4.2. Stage 1: Finding and evaluating current context

In the current context, a predator (EUP) forages between- and
within-variants to find and evaluate variants/patches to establish a
destination variant/patch and aid their current task.
6

4.2.1. Find destination variants
In the current context, while finding a destination variant to use as

a base for future integration, our participants searched for variants in
online repositories using internal or external search engines.

Internal Search: Any searches executed in domain-specific online
epositories (e.g., searching code in AIG or in FE) are referred to as
nternal searches. We found AIG participants made more searches in
he site’s search engine compared to FE participants. With the exception
f P1, all of the AIG participants searched internally. AIG participants
ade 93% of queries in the AIG search engine versus FE participants
ho made 62% of queries in the FE search engine. This suggests that
IG participants preferred using internal search engines as these may
ive more domain-specific search results. Similarly, FE participants
witched to the internal search engine for similar reasons. P7 said, ‘‘I
anted to narrow my search a little more to MATLAB-specific stuff ’’. These

results align with previous research, which found that participants
preferred internal search engines when their goals were defined and
external search engines when they wanted more generic results [43].

External Search: Any searches made in generic search engines (e.g.,
searches in Google or Bing) are referred to as external searches. Only
one AIG participant and three FE participants made external searches.
While all participants made internal searches, only half made external
searches. We observed that our participants expected internal search
engines to behave as external search engines. For example, P1 searched
in the Google Search engine for ‘‘how to search using keywords’’ and
used those techniques to search in AIG. Although these techniques
were not helpful, this behavior indicates that users may expect internal
search engines to behave like external search engines.
Enrichment Strategies: Participants made use of enrichment strategies
during internal and external searching. An enrichment strategy is when
a predator ‘‘mold[s] the environment’’ [33] to enrich the information.
As similarly described by Teevan et al. participants used the ‘‘Orien-
teering’’ approach while formulating queries [44]. While both AIG and
FE participants utilized keywords from the task for their first query
formulation, only FE participants used the following methods:

Domain Keywords: Some participants had experience using online
epositories and used more domain-specific keywords. For example, P7

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

u
I

k
w
r
c
t
w

q
t
T
t
s

c
T
p
p

s
t
e

Fig. 4. P5 physically compares source (left) and destination (right) patches.
w
v
w
f
t
n
t

sed the keyword ‘‘plot’’ instead of ‘‘graph’’ as he commented ‘‘because
feel like MATLAB uses plots’’.
Semantically Similar Keywords: When searching for variants using

eywords, participants saw the recurrence of specific word(s) even
ith new query formations. They used these reoccurring words to

eformulate their queries to get better search results. For example, P5
ommented ‘‘I am writing ‘video files.’ that’s not how MATLAB called [it],
hey used the word ‘animate,’ so I discovered later that I need use the
ord ‘animation’. . . to get better results.’’
Longer Queries:We also observed that our participants created longer

ueries as P6 added ‘‘record’’ to his keywords ‘‘graphs for plotting time’’
o narrow from 221 to 16 results and obtained more useful variants.
hese results led the participant to a program he used later to complete
he task. It is also known that longer keyword queries return better
earch results [45].
Filter: FE participants used the filtering tools provided in File Ex-

hange to narrow and enrich their variants. P8 used ‘‘Refine by Content
ype’’ and ‘‘Refine by Product’’ and found the correct variant of the
rogram in the first page of search results, which without filters, was
laced on the second or third page of search results.
External Search to Narrow Internal Search: Participants also preferred

using external search engines to help them narrow results in the in-
ternal search engines as P5 used Google to search ‘‘plotting a wave
propagation on MATLAB file exchange’’. She later asserted preference
towards external search engines, ‘‘usually Google gives better results than
directly searching in File Exchange’’.
Navigational Strategies: After obtaining search results, participants
navigated the results using the following strategies:

Recency: Recency was used like a filter to narrow the results to
more relevant variants for both AIG and FE participants. For example,
P1 mentioned that she explored options like popular and recent apps
(variants) because she expected that the browser history would remem-
ber the searches made by previous participants in the study. Another
participant, P6, noted how an old app ‘‘may not be so good’’.

Ranking of Results: Rankings, in which variants appeared in the
earch results, were frequently utilized by both AIG and FE participants
o narrow the search results of variants. For example, some participants
xpected the ‘‘most relevant ’’ or ‘‘best results’’ (as P7 and P6 mentioned)

to appear in the front/top of the page; this deterred participants from
going to the next page of search results. As a result, most AIG and FE
participants stayed on the first page of the search results to forage for
variants.
7

Staying within a current resource: Three participants (P2, P3 and P6)
were afraid of taking risks and stayed within the first variant they found
or within patches as can be seen in Fig. 6. AIG participants lacked
an understanding of the environment and the language. Therefore,
when not enough information was available, participants stuck to the
current resource instead of looking for additional resources outside of
the environment.

Best variant selection: Participants tried to search for a variant that
was the closest match for the task and improved upon it instead of
finding and selecting relevant code snippets from less relevant variants.
This is evident as P6 commented ‘‘I checked an app two, three, four times.
Just to see and I wanted to be sure that I was picking the best that would
make my job easy’’.

4.2.2. Evaluate destination variant
Participants evaluated a destination variant to determine whether it

was within the context of the current task.
Cues: While evaluating the variants, participants often used cues as
signposts to develop stronger or weaker scents to select a variant or
navigate away from variants. Our participants used the following cues
while evaluating a relevant variant:

Visual Cues: Visual cues denote the images and snapshots associated
ith variants. Usually, these images present themselves along with a
ariant’s details in a search result. The use of visual cues (images)
as mentioned by six participants as a factor to explore the program

urther. These cues may depict a snapshot of the project, an icon of
he program’s function, which may be irrelevant to the project or
onexistent. For example, participant P2 found variant images relevant
o their task and commented, ‘‘this [application] looks [good] for me,
the microphone.’’ Three participants mentioned visual cues were their
primary method of variant evaluation as P3 admitted he evaluated the
variants by ‘‘pretty much only the pictures.’’ However, not all visual cues
were appreciated equally; as P5 stated, ‘‘the picture cannot really tell you
the whole simulation of the code, so it’s not that helpful.’’

Name-Inspired Cues: Name-Inspired cues represent the variant
names/titles given by developers. All participants mentioned they used
titles to guide them and five used it as their primary cue to evaluate
a variant while the other three stated they used it as a secondary cue.
This is similar to file-name inspired cues [28].

Description-Inspired Cues: Description-Inspired cues refers to the text
describing the functionality of the program. Participants used descrip-
tions of the variant or its description page to evaluate program func-
tions. All FE participants used this cue, which gave a better under-

standing of the program’s functionality. AIG participants used the

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

F

o
b
w
c
w
o

t
b

F
o
c
f

p

descriptions less, as P1 remarked AIG had ‘‘short descriptions’’, while
E had detailed descriptions.
Timestamp-Inspired Cues: Timestamp-Inspired cues refer to the date

f creation or update of a project. In FE, these cues could be found
elow the images of the variant in gray. We found only one participant
ho mentioned the Timestamps. P6 expressed skepticism about the

ompatibility of a file by saying, ‘‘if it’s an old app, it may not be so good
ith MATLAB.’’ He consequently searched ‘‘to see if there’s any update
n the app.’’
Familiarity Cues: Familiarity cues are re-exposure to a variant

hrough different query results. P6 explained he returned to an app
ecause ‘‘[the application] came three different times with three different
keywords’’. Sometimes these cues were misleading as P7 tried to revisit
a project but did not realize it was the project he had already seen until
he ‘‘read the description’’.

Social-Aspect-Inspired Cues: In online repositories, variants are as-
sociated with the social aspects of a project. Our participants mostly
focused on the following aspects:

Authors: Participants used author/developer information to evaluate
a variant. AIG and FE online repositories provided a list of projects
created by the same author. P4 exploited this by evaluating more
variants created by the same author, while P8 associated an image with
its author and contemplated whether a project had the same author
because of similar images.

Number of Functions: Participants evaluated variants as having too
many or too little functions. For example, participant P1 abandoned a
variant, commenting, ‘‘it has functions that we don’t want so I didn’t go
any further ’’.

Ratings: Variant ratings were judged superficially. P6 mentioned
the rating system influenced him and explained that in FE, ‘‘usually
people do ratings according to [how closely the application matched the
keywords searched]’’. However, most participants did not pay attention
to the ratings as P3 commented on not paying more attention to the
‘‘eyeball’’ (views) and the ‘‘hearts’’ (ratings). The ratings also confused
participants as P6 lamented, ‘‘the first option was like five stars, the second
was zero stars . . . I wouldn’t expect that to be on the list, actually.’’ We can
infer the participant expected the results to be sorted by ratings.
Hunting Strategies: When a participant’s goal (predator’s diet) changed
while hunting for a variant [26], we observed the following strategies:

Prioritizing Cues: Participants focused on different cue types in a set
order. To evaluate a variant, they used a primary cue then a secondary
cue and so on. P4 said, ‘‘first thing I looked at is the name,’’ then said,
‘‘apart from the name, I look at the pictures.’’ The participants prioritized
which cue to focus on in their between-variant search.

Sometimes participants reprioritized the cues while they searched.
P8 said, ‘‘pictures tend to be [attention] grabby, but a lot of them didn’t
have them so I had to go to the title’’ then changed his order of the cues
accordingly.

Creating/Using Scenarios: Participants empathized with the personas
and used scenarios to decide if an application satisfied the task re-
quirements. We found that AIG participants empathized with the Bob
persona. P3 considered Bob’s visual impairment and focused on visual
elements to evaluate the variant as he commented, ‘‘if I was picking an
app for Bob who can’t see well, this [app] has the biggest numbers’’.

Since there were no scenarios for FE participants, they created
personas according to different situations. P1 empathized with the de-
veloper, commenting he was ‘‘[looking for] different words to search. . . [a
developer] had used to post.’’ Here we noted that our participants did not
create any stories over time as found in [28].
Navigational Strategies:

Depth-First Strategy : Depth-First strategy occurs when a participant
understands the variants before acting on the results. All AIG partici-
pants stayed on one tab to understand and evaluate one variant at a
time before going to the next variant. Only one FE participant showed

this behavior.

8

Breadth-First Strategy : In Breath-First strategy, participants under-
stood little information before acting and later sought more infor-
mation, if needed. Before further understanding the variants, three
FE participants opened multiple variants in new tabs to evaluate or
download the patches. We found participants evaluated all the variants
before choosing which patch to open or they evaluated each variant
and opened/downloaded patches regardless of how many variants were
opened.

Keeping Trails of Variants: After navigating/evaluating variants, only
E participants kept trails of desirable variants by leaving variants
pen. For example, P8 switched between different tabs of variants and
ommented ‘‘I’ll look it up here so I don’t lose any of the programs I’ve
ound’’.

4.2.3. Find destination patches
Inside the variant, participants found patches to modify the pro-

gram. In within-variant foraging, the two repositories were different.
AIG participants had three patch choices, as denoted in Fig. 1. In
contrast, variants from FE may have contained several patches such
as the actual code files (.m), installer files, and README, which were
usually presented in file folders and were trivial for most users to
navigate. In FE, three participants focused on .m files and only one
participant focused on installer files.

4.2.4. Evaluate destination patches
Each patch found was evaluated based on the cues. Here is the list

of the cues our participants followed:
Cues: Table 4 shows all the cues used by our participants while evalu-
ating a destination patch. Output-inspired cues were the most popular
cue used to gather information. Code-inspired cues were studied by FE
participants as they ‘‘read line by line’’ to understand the code according
to P5. In the current context, internal documentation cues — called
Doc.: Internal, namely tool tips and code comments, were used to
understand the patch. Few participants used code-status-inspired cues
which are elusive and hard to find [28].

Output-Inspired Cues: Output-inspired cues are features from the
output of code generally seen in the emulator patch in the App Inventor
environment and in the output window in the MATLAB environment.
88/131 of these cues were used by AIG participants, while 43/131 were
used by FE participants. In AIG, participants used output-inspired cues
from a patch to evaluate a selected variant. For example, P4 could not
find any output cues in AIG so he backtracked to find a new destination
variant. Participants in FE were particularly resourceful in the output
patch. For example, P7 explored the file menu options in the output
GUI and evaluated the tools that were available to determine whether
MATLAB could perform his desired functionalities.

Code-Inspired Cues: Code-inspired cues are code segments of the
program, which can be processed to determine if the patch should be a
destination patch. For AIG 31/72 participants used code-inspired cues,
while 39/72 FE participants used these cues. In the code editor, AIG
participants read the labels on the blocks of code as clauses and sen-
tences. P3 read a block as: ‘‘When Clockon Timer’’. The FE participants
rimarily searched linearly through the code. P5 said, ‘‘I...read line by
line to know what it is exactly doing’’.

Documentation-Inspired Cues: We consider documentation as either
internal or external to the patch; in the current context, we focus on
internal documentation. (Note: External documentation is primarily
used later in usage context during Stage 2.) We consider internal
documentation to be either tooltips or code comments. AIG participants
used 30/73 cues while FE used 43/73 internal documentation-inspired
cues. AIG focused mainly on tooltips (28/30) and FE focused mainly on
comments (34/43). This cue was mostly for understanding the patch.

Code Status-Inspired Cues: Cues which indicate whether the status of
the program is correct or erroneous. Only two participants noticed these
cues, 6/7 of these cues were used by one participant. Not having seen

the error previously, P4 expressed ‘‘‘Show Warning’? That’s something

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

n
e
N

w
a
p
o

4

f
t

4

A
v
t
s
a
i
t

4

p
u
t
s
t
t
c

Table 4
Destination patch evaluation cues (Columns in gray denote FE participants).
Fig. 5. Keeping trails of patches strategy.

ew’’. We can infer these cues are, as Ragavan et al. [28] explained it,
lusive — cues which are difficult to find.
avigational Strategies:
Keeping Trails of Patches: Keeping trails of patches can be defined as

hen our participants kept a history of desirable patches. After evalu-
ting patches, only FE participants kept trails of patches by keeping the
atches or folders holding the patches open. Fig. 5 shows the behavior
f P5 while using this strategy.

.3. Stage 2: Finding and evaluating a usage context

In the usage context, a predator (EUP) forages between-variants to
ind and evaluate variants/patches to establish a source variant/patch
o facilitate their current task.

.3.1. Find and evaluate source variants
After finding and evaluating the destination patch (in Stage 1),

IG and FE participants exhibited different behaviors to find a source
ariant. All AIG participants except P4 stuck to the destination variant
hey chose, while FE participants actively searched and evaluated other
ource variants. FE participants used similar strategies and cues to find
nd evaluate the source variant as they did with the destination variant
n Stage 1, except they enriched their results by using keywords from
he task.

.3.2. Find and evaluate source patches
FE participants used similar strategies to find and evaluate source

atches as they did in Stage 1. Within the variants, FE participants
tilized similar strategies to find the destination patch as they did in
he current context. However, under the usage context, participants
earched for different types of patches, mostly external documenta-
ions such as forums, Stack Overflow, MATLAB Answers, wikis, or
utorials etc. Thus, not only did the FE participants use the same
ues as they did in the current context; they also utilized the external
documentation-inspired cues due to the change in diet (goals) for an
external documentation patch. The change was mainly driven by their
desire to learn more about the task before utilizing or integrating
the patch for use, which confirms the previous work on Minimal-
ist Learning Theory (MLT) [46–48]. MLT states that programmers
sometimes need to learn the code that they have come across while
foraging to complete a task. For example, while attempting to finish
the task, P6 came across code that he was not familiar with. Instead
of immediately using the code, P6 learned about the code through
external documentation-inspired cues to look for an example tutorial

on the application as he commented, ‘‘I wanted to know how the

9

app works. . . before I do something’’. Additionally, participants used
external documentation to evaluate patches for desirable resources
(e.g., code snippets) to utilize. Two participants tried to search for
useful information in question-and-answer forums. P5, using Stack
Overflow, said, ‘‘I need an example for time varying 3D function so I can
use the example [in the file code]’’.

4.4. Stage 3: Integration

Integration occurs when the destination patch is modified by adding
contents from other sources such as the EUP’s knowledge base of
another patch. The participants used the following strategies while
integrating their code:
Writing Code from Scratch: This process occurs when a programmer
writes code within the programming environment. All AIG participants
wrote code from scratch once they selected a destination patch, which
lead to more Alternative Ideas (AIG 143 vs. FE 13). Meanwhile, FE
participants wrote code from scratch after evaluating a variant and they
did not stick to the destination patch and foraged for other variants.
Thus, they had lower alternative ideas but higher search numbers (AIG
59 vs. FE 68). For example, P7 coded from scratch before finding a des-
tination patch, while P5 coded from scratch after finding a destination
patch related to the task.
Reusing Code: When participants integrated or imported code from
other source patches to a destination patch, they reused code. There are
two types of reuse as defined by Holmes and Walker: analyze-then-act
and cut-and-stanch the bleeding [2].

Analyze-then-act analysis: This type of reuse involves locating the
source of reuse for the most useful code(s) then integrating code in
a destination patch (copy and paste, no modification). FE participants
analyze-then-acted mostly from external documentation. We observed
two reasons when reusing code—to add contents and modify to the
participant’s need or to understand how the code works [41].

Cut-and-stanch the bleeding: In this process, participants take the rel-
evant code and integrate it into the destination patch. AIG participants
only used cut-and-stanch the bleeding strategies because they stuck to
the one patch they found, and they integrated within the project by
copying the existing code and modifying it for their use (copy and paste,
modification).

5. Discussion

In this section, we discuss the foraging behavior of all participants
during the study and compare the cues that were specifically used by
the novice and experienced EUPs.

5.1. Timeline of participants’ behaviors

Fig. 6 summarizes the foraging behaviors of all participants de-
noting cues used during each stage. The outermost colors describes
the three major stages in foraging as discussed in the Reuse Model:
between foraging, within foraging, and integration. Additionally, to
better identify the participants’ foraging timeline and to organize the
user’s foraging behaviors during the two stages—Current Context, Us-

age Context—we designate the colored middle bar with eight different

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010

O
F
t
p
n
i
b
t
o
S
s
d
e

a
A
t
v
s
a
a
c
s
i

s
T
e
t

5

u
i
m
n
i

v

b
t
p

u
d
a

u
p
i

d
d
r
d
D
p
u
t
a
p

a
p
p
p

u
n

6

b

6

p
E
d
w
t
m
C
E
(
o
w
h
p
A

minor stages. This further breaks down the stages into actions, foraging
for either a variant or a patch by their current or usage context (refer
Fig. 3). In the current context, participants forage for a destination
variant. The four minor stages of this process are foraging destination
variants (DVF), evaluating variants (DVE), foraging patches (DPF), and
evaluating patches (DPE). Similarly, in the usage context, participants
forage for a source variant and a patch. The four minor stages are
foraging source variants (SVF), evaluating variants (SVE), foraging
patches (SPF), and evaluating patches (SPE). We observed the following
patterns:
Between- vs. Within-Variants: All participants went from foraging
between-variants to foraging within-variants as shown in Fig. 6. FE
participants foraged between-variants more frequently than AIG par-
ticipants. We conjecture this was because FE participants did not have
enough cues associated with a variant to evaluate it and hence used
more cues while evaluating patches. Meanwhile, AIG participants had
more cues associated with the variant and needed less cues in the patch
to evaluate it.
Source vs. Destination: AIG participants used less (four) different cue
types in the source as compared to FE participants (seven). Seven of
the participants spent less time foraging in the source than in the
destination (refer Fig. 6). Only P8 spent more (>50%) time in the
source than in the destination.

Six participants went straight to integration after destination (refer
Fig. 6). Only P5 went to integration after the source because she had
code errors, and rather than returning to the destination, she went
to the source. Later when asked about this behavior, she commented
‘‘google gives better results than directly searching in File Exchange’’.
rder of Stages: Participants went through stages in different orders.
ig. 6 shows that P5 foraged from the integration stage and went back
o the between-variants stage. This behavior was different from other
articipants as, once they were in the integration stage they would
ot leave it. Only P5 and P7 went from foraging between-variants to
ntegration, and compared to the other six participants, P7 foraged
etween-variants the most. As observed in Fig. 6, participants varied
heir stage paths from one another, and there is not one specific way
f moving between stages.
taying within a Stage: FE and AIG participants remained within a
tage for various amounts of time. We conjecture this behavior is
riven by the predator’s wish to optimize the value per the cost when
valuating variant/patches’ scents (as discussed in Section 2.2).

Three AIG participants (P1, P2 and P3) stayed in the within forging
nd integration stages to understand the patch and complete the task.
s none of the AIG participants had experience in the environment,

hey were more risk-averse. This resulted in lower expectations for
alue gained compared to the higher cost in transitioning between
tages. For example, P4 who foraged between-variants had to search the
pps using appropriate keywords, select the appropriate app, open that
pp, and then evaluate it. When foraging variants/patches the cost in-
urred was more for foraging between-variant/patch thus participants
tayed in within-variant/patch forging or the integration stage as seen
n Fig. 6.

Meanwhile, most FE participants (P5, P7, and P8) utilized all three
tages—the between, within, and integration—to forage for their prey.
his behavior was representative of their better knowledge of the
nvironment, which drove higher value gained with lower cost during
ransitioning.

.2. Comparing cues used by novice and experienced EUPs

In both AIG (novice) and FE (experienced) groups, the type of cues
sed varied as seen in Table 5. FE participants used more description-
nspired cues than AIG participants because the AIG Repository had
ore images than the FE Repository. AIG participants found images
ext to the title of the variant helpful, while FE participants found that
mages (visual cues) were not representative of the functionality of the
10
ariant. For example, P3 commented, ‘‘... pictures. ... that’s what it [app]
would look like on the screen... I didn’t pay any attention to username, or
emails down there. . . ’’, while P7 commented, ‘‘...the plot, the picture was
way more than what I was trying to do...so I just ignored those.’’ Hence,
AIG participants assumed that the images produced the output for an
app, but FE participants ignored the images and relied more on the
description and title of an app.

Cues associated with finding variants: We observed that while finding
variants, both FE and AIG participants used description-inspired, name-
inspired, and visual cues. We also observed different cues being used by
FE and AIG participants. FE participants used document-inspired cues
and code-inspired cues while AIG used output-inspired and author cues.

Cues associated with evaluating variants: While evaluating variants,
oth FE and AIG participants used description-inspired cues. In addi-
ion, FE participants used document-inspired cues while AIG partici-
ants used name-inspired cues.
Cues associated with finding patches: Both FE and AIG participants

sed description-inspired cues while finding patches. In addition to
escription-inspired cues, AIG participants used name-inspired and
uthor cues while FE participants did not.
Cues associated with evaluating patches: We observed that while eval-

ating patches, all participants used output-inspired cues. FE partici-
ants used visual and description-inspired cues in addition to output-
nspired cues.
Cues associated with transitions: Different cues were associated with

ifferent stage transitions (refer Table 6). For example, due to little
escription being available in the AIG repository, the AIG participants
elied more on name-inspired cues, while for the FE participants, the
escription-inspired cue caused the change from the DVF stage to the
VE stage. For transitioning from the DVF stage to the DVE stage, AIG
articipants used the name-inspired cue six times while FE participants
sed the description-inspired cue seventeen times. We conjecture that
his may be because these were clear cues (easy to understand) [26]
nd led to stronger scents. Further, these cues may have led them to
atches with more information features.
Cues associated with destination: We observed in destination both FE

nd AIG participants used description-inspired cues (refer Table 6). AIG
articipants used more name-inspired cues than FE participants, and FE
articipants used more output-inspired cues than AIG participants. AIG
articipants also used author cues while FE participants did not.
Cues associated with the source: While in the source, both FE and AIG

sed visual and name-inspired cues (refer Table 6). AIG participants did
ot use any other cues besides these two cues.

. Implications

In this section, we discuss implications for IFT and tools for EUPs
ased on our results.

.1. Implications for theory

We already know that IFT can model dissimilar but connected
atches. In current programming scenarios, while reusing code, an
UP may find code snippets on different websites (Stack Overflow,
ocumentation, blog post etc.) or in a code repository from programs
ritten by the same or/different authors. This opens research oppor-

unities to extend the IFT model to include similar variants/patches or
echanisms to organize the similar variants/patches into a hierarchy.
ues and Strategies of EUPs in Online Repositories: Since we analyzed
UPs’ behavior in online repositories, we found new sets of cues
noted previously in results) that had not been discussed in previ-
us IFT literature. In Ragavan et al.’s study variants were associated
ith Timestamps (cues), whereas in our study, the online repositories
ad more cues associated with the variants. As a result, our partici-
ants used cost–benefit analysis to evaluate both variants and patches.
mong the new cues, social aspect and familiarity-based cues were

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010
Fig. 6. Participants’ stage patterns and associated cues.
Table 5
Cues associated with stages.

Cues: Stage Description Doc Code Name Output Visual Author

AIG FE

DVF 1
DVE 10 10 5 1 1 4

DPF
DPE 3 8 4 1 9 21 1

SVF 1
SVE 6 2 2 1 2 2

SPF
SPE 6 5 2

INT 5 1
Table 6
Cues Associated with Stage Transitions.

Cues: Description Document Code Name Output Visual Author

Destination AIG FE AIG FE AIG FE AIG FE AIG FE AIG FE AIG FE

DVF<>DVE 4 17 6 1 1
DPF<>DPE 1 2 1 1 1 1
DVF/DVE<>DPF/DPE 2 3 1 3 1 1

Cues: Description Document Code Name Output Visual Author

Source AIG FE AIG FE AIG FE AIG FE AIG FE AIG FE AIG FE

SVF<>SVE 1 4 1 1 1 1 1
SPF<>SPE 1 1
SVF/SVE<>SPF/SPE 1 2 2 3 1 3
SPE>DVF 1
SPE<>DPE 1 1
more popular with participants to make variant foraging decisions in

online repositories.

11
The cues also influenced the foraging decisions of the EUPs. For

example, we found that description cues led the transition between

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010
finding and evaluating variants the most. However, for patch finding
and evaluating, there were no description cues used but instead docu-
ment, code, and output cues. Thus, to encourage movement between
the different stages, file repositories should emphasize the cues that
cause stage transitions and limit the other cues that do not. This will
allow users to reach their end goal faster and reduce the time they are
in a stage. By prioritizing cues and emphasizing the cues that do lead to
transitions, users will not be lost by the many cues presented to them
in a stage. Hence, it motivates the need to operationalize different cues
when variants/patches are involved in the IFT model.

Similarly, we found differences in the strategies followed during
different stages. External documentation is used to inspire learning as
an external documentation-inspired cue but can also be used as a patch
for fixing—also known as integrating in our model. This behavior is
similar to that of professional programmers found by Piorkowski et al.
that there is a difference in learning and fixing code [39]; learning is
similar to the finding and evaluating behavior of participants of the
source variant/patch and fixing is similar to working on code from
a destination variant/patch. This suggests that the IFT model should
dynamically operationalize cues, variants, and patches based on EUPs’
needs at a particular time.
Comparison and Bridging Gaps in Knowledge: Comparison and bridg-
ing gaps in knowledge are categorized as overall strategies in the reuse
model because they were used and can be used anywhere between-
and within-variants as well as in finding and evaluating variants and
patches. In contrast, Ragavan et al.’s reuse model only exemplified
strategies for foraging between- and within-variants.

Comparison was intriguing because only experienced EUPs, FE
participants, utilized the strategy to compare not only between- and
within-variants (variants to variants and patches to patches) but also
across variants and patches (variants to patches). In other words,
comparison could happen anytime in the Reuse models and should
be introduced into the IFT model, reaffirming the findings of Ragavan
et al. [28].

Bridging gaps in knowledge was also interesting because both
groups of participants–novice and experienced–utilized this to change
their goals and strategies. Participants also switched between naviga-
tion and enrichment strategies to further bridge gaps in knowledge. The
goals or strategies of users can change anytime in the IFT model due
to the gaps of their knowledge.
Navigator vs. Explorer Predator: Our results show that the two groups
of participants (predators) exhibited different types of characteristics,
namely: navigators and explorers. AIG participants were navigators
who were more risk averse and thus mostly navigated within their
given environment (AIG repository and IDE), utilized few strategies,
and stuck to their source variant/patch and did not look for variants or
patches in the usage context. Meanwhile, FE participants were explorers
who took risks and used both internal and external search engines,
utilized various strategies, and searched for more variants and patches
in usage context. Hence, IFT should model the navigator and explorer
behaviors of predators to fit their specific needs.

6.2. Implications for tools

Removing/Adding Search Trails: While evaluating or understanding
variants/patches, we found that the participants kept a trail mentally or
physically when comparing across variants/patches. Online repositories
do not support this comparison behavior. Further, we also found that
participants wanted either some variant to be included or removed from
the list of variants returned by searches in online repositories. Thus,
they wanted to keep trails or remove the uninteresting trails from their
history. These findings suggest that there is a need for tools to support
such behavior which will help in reducing the time for finding similar
variants and cognitive load of EUPs.
Integrating Enrichment Strategies: Our participants used different en-
richment strategies while searching for the variants in online repos-
itories. Currently, most of the end-user internal-code search engines
12
are based on keyword search. The keyword-based search engines need
EUPs to recall the information related to the variant they are looking
for, hence adding more cognitive load. There is a need for better search
engines, which may facilitate EUPs to just recognize the variants. Some
of the search engines like specification-based searches [49], CODEBRO-
KER [50], or behavior-based clustering for visual programs [51] can be
helpful to an extent.

Current keyword-based search engines can utilize query formulation
strategies and integrate them to formulate better queries to get better
search results. As we have seen, novice EUPs did not use most of the
enrichment strategies. This motivates the need for search engines to
facilitate query formulations, like facilitating the formation of longer
queries [45], giving recommendations for query formulations [52], and
allowing filters to be used efficiently.
Automatic Cues Extractions: Our results suggest having different cue
types, visual and textual (name-inspired and description-inspired), will
be helpful for both types of EUP groups (novice and experienced).
Hence, online repositories as well as IDEs should facilitate the auto-
matic extraction of the outputs to give better visual cues and of the
features to give better textual descriptions of a program. The results
also suggest that having more cues of one type will cause users to focus
on that one cue type, think highly of those cues, and neglect other
cues that do not show up as often. Having a balanced number of cues
of different types will reduce the user’s over thinking in excess cues
and negligence in few cues. These cues should be associated with the
variants to facilitate evaluation of variants/patches.
Allowing Explorations: As previously mentioned, we found that the
AIG participants were navigators who stayed in the IDE once they
found the relevant patch. They never looked for the relevant variants
they needed to integrate. This type of behavior can be facilitated by
having a recommendation system which can recommend variants based
on previous users’ actions (i.e. ‘‘people who viewed this also viewed
this. . . ’’). Additionally, having the search engine integrated within an
IDE can allow for easy access to relevant variants (i.e. within the same
window, the IDE and search engine can be open side-by-side).
Finding Code Using Code Properties: The current search mechanisms
for internal code repositories and external search engines both tai-
lor to text-based search. Code is inherently different from the text
description—code has various properties like the number of parameters
in a function, data types, behavior, readability, and correctness that
current search engines do not fully enable foraging for. As noted,
our participants used text descriptions to describe the semantic of the
code while searching for a variant (apps/projects), and depended on
existing descriptions for variants, which resulted in a higher margin
of error. This also increases cognitive load for EUPs as they align their
strategy to the current text-based search engine. Further, this challenge
is more apparent in visual programming languages which are not easily
accessible using the current text-based search engine. This necessitates
the need for researching more sophisticated mechanisms that utilize
the plethora of code properties (i.e. using the number of parameters in
a function, data types, etc. in addition to the given text descriptions)
within search engines.

7. Threats to validity

All empirical studies have threats to validity that should be consid-
ered when interpreting results. In this section, we present the threats
to validity of our study.

7.1. External validity

Our study participants are representative of a small sample of the
EUP population, leading to an external threat to validity. Furthermore,
within this small sample, the gender was not balanced as only two
participants were female. Hence, the behaviors of our study participants

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010
may not be representative of how all EUPs may forage in online repos-
itories or integrate between patches. However, this was a formative
study and we used two different groups of participants to get a broad
understanding of EUPs and their behaviors. For our study, we used
volunteers who were motivated to complete the tasks, as shown by their
willingness to participate. Additionally, for convenience, we selected
from a student sample which can be equivalent to professionals ‘‘when
their knowledge, skills and experiences fit within the tool’s intended
user population’’ [53]. Overall, our sample of EUPs are in accordance
with (1) Nielsen’s scale for usability studies [54], (2) Johnson’s min-
imum required population for controlled experiments [55], and (3)
studies on end-user software evaluations [e.g. 56,57].

Another threat can arise from the choice of the two groups used in
our study, the AIG group consisting of novice EUPs and the FE group
of experienced EUPs. Since we evaluated only these two groups, the
results on the foraging behavior of EUPs may have been influenced
by the domain knowledge, complexity of the foraging environment,
and experience and skill level of the participants. Although, this was
an intentional study design choice to allow us to analyze programmer
experience as a factor while foraging in online repositories.

Furthermore, the tasks given to participants were only a small
sample of possible tasks and may not be representative of real-world
scenarios. Although, the tasks were formed based on the popularity
of variants in the AIG and FE repositories and we attempted to create
scenarios that seemed realistic.

7.2. Internal validity

In our study, we designed two tasks to be similar across the two
selected environments, AIG and FE. In both cases, Task 1 consisted of
searching for a program variant given a set of specifications and Task
2 consisted of finding another program to integrate into the one found
in Task 1. We intended for the resulting found variants to be on the
second page of the participants’ searches despite the environment. The
two tasks were not counterbalanced which could have led to learning
effects regarding the tasks as well as foraging mechanisms used by
the participants. Although, this design was intentional as the second
task was meant to depend on the first task in order to mimic a real-
life reuse scenario where searching/finding, evaluating, and selecting
is performed before integrating reusable code into another code base.

7.3. Construct validity

Despite attempts to make the two tasks similar across different
environments there is a construct threat to validity as the complexity
of the tasks may not have been equivalent for each (AIG and FE) group
of participants.

8. Related works

In this section, we discuss the related works on code reuse in online
repositories and IFT as utilized by the software engineering community.

8.1. Code reuse in online repositories

Code reuse in online repositories can be a challenging task as
the information seeking behavior of EUPs requires a higher cognitive
effort and may not be fully supported by the tools provided within
online repositories. EUPs’ code reuse can be facilitated through the
implementation of tools that support the finding and reusing of ap-
propriate variants of a program. Variation-supporting tools have been
utilized for comparing and creating code alternatives [58–61]. Some
of these tools consider a single project and facilitate the variant cre-
ation process. Other tools facilitate the variant selection process by
comparing variants graphically. Hartmann et al. introduced Juxtapose

as a tool for parallel code editing to quickly create code alternatives

13
and simultaneously compare their output [62]. Kuttal et al. imple-
mented AppInventorHelper, a variation management support tool, to
help EUPs visualize the relationships among variants. This tool had
provided insights into EUPs’ variation selection behavior and proved
to be useful in navigating through variants and determining which to
reuse [63]. In addition to these tools, great strides have been made
in file management in regards to variation: Karlson et al. introduced
the ‘‘version-set’’, a representation of variants from a single source,
to help users better manage their personal information (i.e., their
personal repository) [64]. Kuttal et al. created tools to allow end-
user programmers to keep a collection of ‘‘past and present variants’’
originating from a single artifact [63,65–69]. Furthermore, to assist in
the analysis of forging among variants, Ragavan et al. introduced PFIS-
V, a computational model that models people’s forging behavior within
an environment containing variants [29]. Such a model can be utilized
to provide implications on how to improve existing tools dealing with
variants and what other tools may be necessary.

8.2. IFT in software engineering

Software engineering has benefitted from IFT. The domains include
debugging, code reuse, code maintenance, and navigation behavior
modeling and prediction [19–23]. Lawrance et al. presented a model,
the PFIS2, which suggests navigation tools can predict appropriate
places to guide programmers towards fixing bugs in their code [23].
This model was further progressed by Piorowski et al. to understand
programmers’ goals and strategies as they forage to debug their pro-
grams [24]. Later, Piorkowski et al. developed PFIS3 and introduced
a PFIS-based tool for debugging [25]. Kuttal et al. studied debugging
behavior by using IFT to examine web-active EUPs’ interactions and
provided categories for the cues and strategies utilized by EUPs when
finding and fixing bugs [26,27].

Previous literature related to IFT focused on foraging behavior in a
single artifact (variant). Ragavan et al. extended the model to include
the foraging behavior of novice programmers when given temporally
similar variants [28]. Inspired by their work, we utilized their model
to understand how EUPs forage for similar variants not only tempo-
rally (variants of same project developed over time) but also spatially
(variants of similar projects developed by different authors).

9. Conclusion

This is the first study to use an IFT perspective to examine the
reuse behavior of EUPs in online repositories. Overall, our participants
changed their goals and strategies to bridge gaps in knowledge by
reassessing their knowledge base. Further, they compared source vari-
ants/patches all throughout the reuse phenomena. Our results revealed
the following insights:
RQ1 - Types of information used In variants, our results showed
new cues such as: visual-inspired, description-inspired, social-aspect-
inspired, and familiarity-inspired. Meanwhile, in patches, we found
cues such as: documentation-inspired, output-inspired, code-inspired,
and code-status-inspired. Additionally, experienced programming par-
ticipants preferred textual cues while other participants preferred visual
cues while evaluating variants to consume.

• RQ1a - Between-variant foraging : Participants used various for-
aging strategies to reduce the cost of finding and evaluating a
variant. They used enrichment strategies such as: domain-specific
keywords, filtering results, using external search engines to nar-
row results in internal search engines, recurring semantically-
similar keywords, and longer queries. After enriching variants, all
participants used navigational strategies such as: recent variants
and ranking of variants. They also used hunting strategies such as:
prioritizing cues and empathizing with personas or developers to
find the variant. Participants with more programming experience
utilized more diverse strategies to find and evaluate a variant.

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010
• RQ1b - Within-variant foraging : We found that experienced
programming participants used keeping trails strategy to keep
a history of desirable patches. Further, more experienced pro-
gramming participants used different variants, patches, external
documents to evaluate a patch. Meanwhile, less experienced par-
ticipants limited themselves to a single variant and explored the
internal documentation as all the patches in the variant had to be
utilized.

RQ2 - Integrating code: Participants used strategies such as: writing
code from scratch, analyze-then-act, and cut-and-stanch. Experienced
programming participants used writing code from scratch and analyze-
then-act strategies to better understand the destination and source
patches to facilitate integration. Meanwhile, less experienced program-
ming participants did not utilize source variant/patch and therefore
used writing code from scratch and cut-and-stanch strategies to in-
tegrate their programming task which resulted in many alternative
ideas.

Finally, we discuss implications for IFT theory and reveal new
opportunities to design better tools for EUPs who reuse code variants
in online repositories.

CRediT authorship contribution statement

Sandeep Kaur Kuttal: Supervised throughout the life of the project,
Designed and conducted the user studies with eight participants, Ana-
lyzed the transcripts, Reviewed and wrote the paper. Se Yeon Kim:
Analyzed the transcripts in-depth, Wrote the initial draft of the paper.
Carlos Martos: Created the transcript and collected the code set, Wrote
the initial draft of the paper. Alexandra Bejarano: Helped with writing
and reviewing the final draft.

Declaration of competing interest

Following are the researchers I have collaborated with on research
papers or research grants.

Allen, Joseph: University of Nebraska at Omaha; Rothermel, Gregg:
University of Nebraska- Lincoln; Sarma, Anita: University of Nebraska-
Lincoln; Burnett, Margaret, M.: Oregon State University; Chen, Xiaofan:
Newenergy Enterprise Group Limited, NZ; Dabbish, Laura: Carnegie
Mellon University; Fleming, Scott: University of Memphis; Gamble,
Rose: University of Tulsa; Hale, Mattew: University of Nebraska at
Omaha; Kwan, Irwin: Mathworks, USA; Bellamy, Rachael: IBM Re-
search, USA; Peters, Anica: Polytechnic of Namibia, Namibia, Africa;
Piorkowski, David: IBM Research, USA; Lee, Michael, J: New Jersey
Institute of Technology; Myers, A. Brad: Carnegie Mellon University;
Ko, Amy: University of Washington; Ahmed, Iftekar: University of
California, Irvine; Eziquel Scott: University of Tartu, Estonia; Sharma,
Rajesh: University of Tartu, Estonia; Yunfeng Zhang: IBM Research,
USA; Sruti Ragavan: Microsoft Research, England

Acknowledgments

We would like to thank Jiayi Lu and Cao Huyng for their contribu-
tions to the study analysis and our study participants for their valuable
time.

References

[1] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, S.R. Klemmer, Opportunistic
programming: Writing code to prototype, ideate, and discover, IEEE Softw. 26
(5) (2009) 18–24.

[2] R. Holmes, R.J. Walker, Systematizing pragmatic software reuse, ACM Trans.
Softw. Eng. Methodol. 21 (4) (2013) 44, Article 20.

[3] M. Burnett, B. Myers, Future of end-user software engineering: beyond the
silos, in: International Conference on Software Engineering (ICSE) Companion
Proceedings, 2014, pp. 201–211.

[4] MathWorks. File Exchange - MatLab Central. Retrieved June 26, 2020 from

http://www.mathworks.com/matlabcentral/fileexchange/.

14
[5] MathWorks. MATLAB - MathWorks - MATLAB & Simulink. Retrieved June 26,
2020 from http://www.mathworks.com/products/matlab/?requestedDomain=
www.mathworks.com.

[6] MIT App Inventor. Join the App Inventor Community Gallery. Retrieved
June 26, 2020 from http://appinventor.mit.edu/explore/blogs/shay/2013/04/
join-app-inventor-community-gallery.html.

[7] MIT App Inventor. MIT App Inventor | Explore MIT App Inventor. Retrieved
June 26, 2020 from https://appinventor.mit.edu/.

[8] Scratch. Scratch - Explore. Retrieved June 26, 2020 from https://scratch.mit.
edu/explore/.

[9] Scratch. Scratch - Imagine, Program, Share. Retrieved June 26, 2020 from
https://scratch.mit.edu/projects/editor/?tip_bar=home.

[10] K.T. Stolee, S. Elbaum, A. Sarma, Discovering how end-user programmers and
their communities use public repositories: A study on Yahoo! Pipes, Inf. Softw.
Technol. 55 (2013) 1289–1303.

[11] S.K. Kuttal, A. Sarma, G. Rothermel, Debugging support for end-user mashup
programming, in: Computer-Human Interaction (CHI), 2013, pp. 1609–1618.

[12] C. Bogart, M. Burnett, A. Cypher, C. Scaffidi, End-user programming in the wild:
A field study of coscripter scripts, in: IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2008, pp. 39–46.

[13] W.E. Mackay, Patterns of sharing customizable software, in: ACM Conference on
Computer-Supported Cooperative Work, 1990, pp. 209–221.

[14] K. Martzoukou, A review of web information seeking research: considerations of
method and foci of interest, Inf. Res. 10 (2) (2005).

[15] W. Fu, P. Pirolli, SNIF-ACT: a cognitive model of user navigation on the world
wide web, in: Human-Computer Interaction, Vol. 22, (4) 2007, pp. 355–412.

[16] P. Pirolli, W. Fu, E. Chi, A. Farahat, Information scent and web navigation:
Theory, models and automated usability evaluation, in: Proceedings of HCI
International, 2005.

[17] P. Pirolli, W. Fu, SNIF-ACT: a model of information foraging on the world wide
web, in: User Modeling 2003, Springer Berlin Heidelberg, 2003, pp. 45–54.

[18] P. Pirolli, Computational models of information scent-following in a very large
browsable text collection, in: Computer-Human Interaction (CHI), 1997, pp.
3–10.

[19] N. Niu, A. Mahmoud, G. Bradshaw, Information foraging as a foundation for code
navigation (NIER track), in: International Conference on Software Engineering
(ICSE), 2011, pp. 816–819.

[20] J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, C. Swart, Reactive information
foraging for evolving goals, in: Computer-Human Interaction (CHI), 2010, pp.
25–34.

[21] S.D. Fleming, et al., An information foraging theory perspective on tools for
debugging, refactoring, and reuse tasks, ACM Trans. Softw. Eng. Methodol. 22
(2(14)) (2013).

[22] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, How people debug,
revisited: an information foraging theory perspective, in: IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2009, pp. 117–124.

[23] J. Lawrance, R. Bellamy, M. Burnett, K. Rector, Using information scent to
model the dynamic foraging behavior of programmers in maintenance tasks, in:
Computer-Human Interaction (CHI), 2008, pp. 1323–1332.

[24] D. Piorkowski, S.D. Fleming, C. Scaffidi, L. John, C. Bogart, B.E. John, M.
Burnett, R. Bellamy, Modeling programmer navigation: a head-to-head empirical
evaluation of predictive models, in: IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2011, pp. 18–22.

[25] D. Piorkowski, S.D. Fleming, C. Scaffidi, C. Bogart, M.M. Burnett, B.E. John,
R. Bellamy, C. Swart, Reactive information foraging: an empirical investigation
of theory-based recommender systems for programmers, in: Computer-Human
Interaction (CHI), 2012, pp. 1471–1480.

[26] S.K. Kuttal, A. Sarma, G. Rothermel, Predator behavior in the wild web world of
bugs: an information foraging theory perspective, in: IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2013, pp. 59–66.

[27] S.K. Kuttal, M.M. Burnett, A. Sarma, G. Rothermel, I. Koeppe, B. Shepherd,
How end-user programmers debug visual web-based programs: An information
foraging theory perspective, J. Compu. Lang. (2019).

[28] S.S. Ragavan, S.K. Kuttal, C. Hill, A. Sarma, D. Piorkowski, M. Burnett, Foraging
among an overabundance of similar variants, in: Computer-Human Interaction
(CHI), 2016, pp. 3509–3521.

[29] S.S. Ragavan, B. Pandya, D. Piorkowski, C. Hill, S.K. Kuttal, A. Sarma, M.
Burnett, PFIS-V: Modeling foraging behavior in the presence of variants, in:
Computer-Human Interaction (CHI), 2017.

[30] C. Martos, S.Y. Kim, S.K. Kuttal, Reuse of variants in online repositories: foraging
for the fittest, in: IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2016, pp. 124–128.

[31] P. Pirolli, S. Card, Information foraging in information access environments, in:
Computer-Human Interaction (CHI), 1995.

[32] P. Pirolli, Information Foraging Theory: Adaptive Interaction with Information,
Oxford University Press, 2009.

[33] P. Pirolli, Rational analyses of information foraging on the web, Cogn. Sci. 29
(3) (2005) 343–373.

http://refhub.elsevier.com/S2590-1184(20)30070-8/sb1
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb1
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb1
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb1
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb1
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb2
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb2
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb2
http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/products/matlab/?requestedDomain=www.mathworks.com
http://www.mathworks.com/products/matlab/?requestedDomain=www.mathworks.com
http://www.mathworks.com/products/matlab/?requestedDomain=www.mathworks.com
http://appinventor.mit.edu/explore/blogs/shay/2013/04/join-app-inventor-community-gallery.html
http://appinventor.mit.edu/explore/blogs/shay/2013/04/join-app-inventor-community-gallery.html
http://appinventor.mit.edu/explore/blogs/shay/2013/04/join-app-inventor-community-gallery.html
https://appinventor.mit.edu/
https://scratch.mit.edu/explore/
https://scratch.mit.edu/explore/
https://scratch.mit.edu/explore/
https://scratch.mit.edu/projects/editor/?tip_bar=home
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb10
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb10
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb10
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb10
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb10
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb11
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb11
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb11
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb14
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb14
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb14
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb15
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb15
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb15
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb17
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb17
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb17
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb18
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb18
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb18
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb18
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb18
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb20
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb20
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb20
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb20
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb20
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb21
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb21
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb21
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb21
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb21
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb23
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb23
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb23
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb23
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb23
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb25
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb27
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb27
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb27
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb27
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb27
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb28
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb28
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb28
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb28
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb28
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb29
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb29
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb29
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb29
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb29
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb31
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb31
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb31
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb32
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb32
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb32
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb33
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb33
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb33

S.K. Kuttal, S.Y. Kim, C. Martos et al. Journal of Computer Languages 62 (2021) 101010
[34] MathWorks. MATLAB vs. Python: Top Reasons to Choose MATLAB. MATLAB
vs. Python: Top Reasons to Choose MATLAB - MATLAB & Simulink. Retrieved
June 26, 2020 from https://www.mathworks.com/products/matlab/matlab-vs-
python.html.

[35] C.H. Lewis, Using the ‘Thinking Aloud’ method in cognitive interface design,
1982, RC 9265, IBM.

[36] TechSmith, Morae. Retrieved June 26, 2020 from https://www.techsmith.com/
morae.html.

[37] F. Shull, J. Singer, D.I. Sjøberg, Guide to Advanced Empirical Software
Engineering, Vol. 93, Springer, 2008.

[38] P. Borlund, Experimental components for the evaluation of inteactive information
retrival systems, J. Documentations 56 (1) (2000) 71–90.

[39] D. Piorkowski, S.D. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A.Z. Henley, J.
Macbeth, C. Hill, A. Horvath, To fix or to learn? How production bias affects
developers’ information foraging during debugging, in: International Conference
on Software Maintenance and Evolution (ICSME), 2015.

[40] P. Jaccard, Étude comparative de la distribution florale dans une portion des
Alpes et des Jura, Bulletin del la Société Vaudoise des Sciences Naturelles 37
(1901) 547–579.

[41] M.B. Rosson, J.M. Carroll, The reuse of uses in smalltalk programming, ACM
Trans. Softw. Eng. Methodol. 3 (3) (1996) 219–253.

[42] B. Dervin, B.D.L. Foreman-Wernet, et al., Sense-Making Methodology Reader:
Selected Writings of Brenda Dervin, Hampton Press, 2003.

[43] A. Abraham, Information Seeking from Web-Based Resources: Sensemaking
Strategies and Implications for Interaction Design (Ph.D. dissertation), The Open
University, 2013.

[44] J. Teevan, C. Alvarado, M.S. Ackerman, D.R. Karger, The perfect search en-
gine is not enough: A study of orienteering behavior in directed search, in:
Computer-Human Interaction (CHI), 2004, pp. 415–422.

[45] N.J. Belkin, et al., Query length in interactive information retrieval, in: Special
Interest Group in Information Retrieval (SIGIR), 2003, pp. 205–212.

[46] J.M. Carroll, The Nurnberg Funnel, MIT Press, Cambridge, MA, 1990.
[47] J.M. Carroll, Minimalism Beyond the Nurnberg Funnel, MIT Press, Cambridge,

MA, 1998.
[48] H. van der Meij, J.M. Carroll, Principles and heuristics for designing minimalist

instruction, Tech. Commun. 42 (2) (1995) 243–261.
[49] K.T. Stolee, S. Elbaum, Toward semantic search via SMT solver, in: FSE, 2012,

Art. 25.
[50] Y. Ye, G. Fischer, Supporting reuse by delivering task-relevant and personalized

information, in: International Conference on Software Engineering (ICSE), 2002,
pp. 513–523.

[51] S. Surisetty, C. Law, C. Scaffidi, Behavior-based clustering of visual code, in:
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
2015, pp. 261–269.

[52] L. Martie, T.D. LaToza, A. van der Hoek, Codeexchange: Supporting reformu-
lation of internet-scale code queries in context (t), Autom. Softw. Eng. (2015)
24–35.

[53] A.J. Ko, T.D. LaToza, M.M. Burnett, A practical guide to controlled experiments
of software engineering tools with human participants, Empir. Softw. Eng. (2015)
110–141.
15
[54] J. Nielsen, How many test users in a usability study?, 2012, Nielsen Norman
Group 4, 2012. Retrieved September 26, 2020 from https://www.nngroup.com/
articles/how-many-test-users/.

[55] P. Johnson, Human Computer Interaction: Psychology, Task Analysis, and
Software Engineering, McGraw-Hill, 1992.

[56] S. Arslan, G. Kardas, DSML4DT: A domain-specific modeling language for device
tree software, Comput. Ind. 115 (2020).

[57] T. Miranda, M. Challenger, Baris Tekin Tezel, Omer Faruk Alaca, Ankica Barišić,
Vasco Amaral, Miguel Goulão, Geylani Kardas, Improving the usability of a
MAS DSML, in: International Workshop on Engineering Multi-Agent Systems,
Vol. 11375, 2019, pp. 55–75.

[58] B. Hartmann, S. Follmer, A. Ricciardi, T. Cardenas, S.R. Klemmer, d.note:
revising user interfaces through change tracking, annotations, and alternatives,
in: Computer-Human Interaction (CHI), 2010, pp. 493–502.

[59] R. Kumar, J.O. Talton, S. Ahmad, S.R. Klemmer, Bricolage: example-based
retargeting for web design, in: Computer-Human Interaction (CHI), 2011, pp.
2197–2206.

[60] M. Terry, E.D. Mynatt, Side views: persistent, on-demand previews for
open-ended tasks, User Interface Softw. Technol. (2002) 71–80.

[61] M. Terry, E.D. Mynatt, K. Nakakoji, Y. Yamamoto, Variation in element
and action: supporting simultaneous development of alternative solutions, in:
Computer-Human Interaction (CHI), 2004, pp. 711–718.

[62] B. Hartmann, L. Yu, A. Allison, Y. Yang, S.R. Klemmer, Design as exploration:
Creating interface alternatives through parallel authoring and runtime tuning, in:
Proceedings of the ACM Symposium on User Interface Software and Technology,
2008, pp. 91–100.

[63] S.K. Kuttal, A. Sarma, G. Rothermel, Z. Wang, What happened to my application?
Helping end users comprehend evolution through variation management, Inf.
Softw. Technol. 103 (2018) 55–74.

[64] A.K. Karlson, G. Smith, B. Lee, Which version is this?: improving the desktop
experience within a copy-aware computing ecosystem, in: Computer-Human
Interaction (CHI), 2011, pp. 2669–2678.

[65] S.K. Kuttal, Leveraging Variation Management to Enhance End Users’ Program-
ming Experience (Ph.D. dissertation), ETD Collection for University of Nebraska
– Lincoln, CS, UNL, Lincoln, NE, 2014.

[66] S.K. Kuttal, A. Sarma, G. Rothermel, On the benefits of providing versioning
support for end users: an empirical study, ACM Trans. Softw. Eng. Methodol. 21
(2(9)) (2014).

[67] S.K. Kuttal, Variation support for end users, in: IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2013, pp. 183–184.

[68] S.K. Kuttal, A. Sarma, G. Rothermel, History repeats itself more easily when you
log it: versioning for mashups, in: IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2011, pp. 69–72.

[69] S.K. Kuttal, A. Sarma, A. Swearngin, G. Rothermel, Versioning for mashups - an
exploratory study, in: Proceedings of the International Symposium on End-User
Development – IS-EUD, 2011, 25–41.

https://www.mathworks.com/products/matlab/matlab-vs-python.html
https://www.mathworks.com/products/matlab/matlab-vs-python.html
https://www.mathworks.com/products/matlab/matlab-vs-python.html
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb35
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb35
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb35
https://www.techsmith.com/morae.html
https://www.techsmith.com/morae.html
https://www.techsmith.com/morae.html
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb37
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb37
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb37
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb38
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb38
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb38
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb40
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb40
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb40
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb40
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb40
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb41
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb41
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb41
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb42
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb42
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb42
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb43
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb43
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb43
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb43
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb43
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb44
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb44
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb44
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb44
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb44
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb45
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb45
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb45
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb46
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb47
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb47
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb47
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb48
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb48
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb48
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb49
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb49
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb49
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb52
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb52
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb52
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb52
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb52
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb53
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb53
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb53
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb53
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb53
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb55
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb55
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb55
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb56
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb56
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb56
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb58
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb58
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb58
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb58
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb58
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb59
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb59
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb59
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb59
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb59
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb60
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb60
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb60
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb61
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb61
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb61
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb61
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb61
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb63
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb63
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb63
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb63
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb63
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb64
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb64
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb64
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb64
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb64
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb65
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb65
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb65
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb65
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb65
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb66
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb66
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb66
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb66
http://refhub.elsevier.com/S2590-1184(20)30070-8/sb66

	How end-user programmers forage in online repositories? An information foraging perspective
	Introduction
	Background
	Variations
	Information foraging theory

	Methodology
	Environment
	App Inventor Gallery (AIG)
	File Exchange (FE)

	Participants
	Study design
	Task context
	Qualitative analysis

	Results
	Overall strategies
	Stage 1: Finding and evaluating current context
	Find destination variants
	Evaluate destination variant
	Find destination patches
	Evaluate destination patches

	Stage 2: Finding and evaluating a usage context
	Find and evaluate source variants
	Find and evaluate source patches

	Stage 3: Integration

	Discussion
	Timeline of participants' behaviors
	Comparing cues used by novice and experienced EUPs

	Implications
	Implications for theory
	Implications for tools

	Threats to validity
	External validity
	Internal validity
	Construct validity

	Related works
	Code reuse in online repositories
	IFT in software engineering

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

