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Abstract— For human operators to effectively task teams of
robots, it is critical that they maintain situational awareness
about the status of those robots. However, maintaining this
situational awareness becomes particularly difficult when there
are dynamic changes not only in the members of the robot team,
but also in the capabilities of those robots. Prior work has shown
that situational awareness can be supported through interfaces
that effectively visualize task-relevant information. As such, in
this work, we introduce a Capability-Level System for Tracking
Robots (CLSTR), a new visualization for supporting operators
to maintain an appropriate level of situational awareness over
the capabilities of a dynamic robot team. In evaluating CLSTR
through an online human-subject study (n=123), we found that a
combination of different visual elements within an interface like
the use of icons to summarize robot capabilities and animations
to indicate team changes can help operators maintain awareness
over robot teams.

I. INTRODUCTION AND RELATED WORK

For human operators to effectively task teams of robots, it
is critical that they maintain situational awareness about the
status of those robots [1], [2]. This status information may
include details about each robot’s abilities and condition, the
environment in which a robot is situated, and the tasks to be
completed by that robot. To support operators in maintaining
an appropriate level of situational awareness, it is essential
for user interfaces to present this type of information in a way
that is “readily available, easily interpretable, appropriately
prominent, and simple enough for the typical user” [3].
Failure to satisfy these guidelines can result in low situa-
tional awareness, limiting an operator’s ability to effectively
assess and task robots, in turn negatively impacting task
performance and completion [4], [5], [6]. As such, it is
vital to design user interfaces that help operators maintain
an appropriate level of situational awareness during robot
tasking [7], [8], [9].

Previous research has shown how operators’ situational
awareness can be increased by designing interfaces that
more effectively visualize task-relevant information through
robot status indicators and interpreted sensor readings [10],
[11], [12], [5]. For instance, Larochelle and Kruijff [10]
designed an interface that presents operators with multiple
customizable views of sensor data visualizations. While
multiple views like those presented by Larochelle and Kruijff
can increase an operator’s situational awareness during single
robot tasking, such designs may result in low situational
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awareness for operators tasking multiple robots because
of the increased number of sensor-producing architectural
components to monitor across a robot team [13], [14], [15].

In multi-robot tasking, multiple operators, each overseeing
a single robot on separate user interfaces, may be needed
to maintain an appropriate level of situational awareness
over a team of robots. However, operators may prefer to be
able to oversee multiple robots at a time to increase task
efficiency [16] and reduce both the number of operators
and separate interfaces needed [2]. In such cases, often a
single operator has to actively switch their attention between
multiple interface views to focus on different robots (e.g.
as done in [17], [18], [8]). Although this enables a single
operator to task multiple robots, it may be difficult for
operators to maintain awareness of when and what changes
or failures occur across an entire team of robots.

To address this challenge, recent work has introduced
novel visualizations that quickly communicate information
about the condition of multiple robots. For example, Seo
et al. [19] use icons to communicate information like robot
battery life and the amount of physical damage taken by
a robot. Similarly, Petlowany et al. [20] introduced an
augmented reality interface that visualizes pop-up menus
containing robot information when a user focuses their gaze
on a particular robot. However, these visualizations may
still require operators to shift their attention between robots.
Moreover, the information provided does not summarize the
capabilities of each individual robot in a team. Without
such a summary, it may be difficult for operators to quickly
identify which robots are available for tasking and what those
available robots can be tasked to do. This raises the research
question: How can we support operators in maintaining an
appropriate level of situational awareness over a robot team?

To address this question, we introduce a new visualiza-
tion called Capability-Level System for Tracking Robots
(CLSTR). In the following sections, we discuss our designed
CLSTR visualization and present the results of an online
human-subject study (n=123) evaluating it.

II. CAPABILITY-LEVEL SYSTEM FOR TRACKING ROBOTS

CLSTR is a new visualization for tasking interfaces that
displays a summary of the capabilities of each individual
robot in a team. Through this visualization, we aimed to
support operators in maintaining an appropriate level of
situational awareness over a robot team during multi-robot
tasking. In this section, we reflect on the robot architecture
used to enable the visualization of CLSTR, and discuss the
design of this visualization.



(a) CLSTR1 (b) CLSTR2 (c) DIARC’s Component Graph

Fig. 1: Interface visualizations for tracking robot components. Figures (a) and (b) show variations of CLSTR, a new
visualization that makes use of icon representations to provide an organized summary of robot components. Figure (c)
shows the default component graph of the DIARC robot architecture. Unlike Figures (a) and (c), (b) explicitly indicates
component disconnections by showing crossed out icons.

A. Architectural Reflection

To implement our CLSTR visualization (two versions
of which are shown in Figures 1a and 1b), we leverage
the DIARC (Distributed Integrated Affect Reflection and
Cognition) robot architecture [21], [22]. In DIARC, each
robot is comprised of a set of distributed architectural
components. These components include a robot’s different
sensing, movement, and communication abilities. As such,
to track each robot and their capabilities in our CLSTR
visualization, we created a grouping architectural component
(GROUPCOMPONENT) which performs reflection into the
architecture’s state in order to track what extant components
are associated with which robots in a team.

To dynamically track when robot components (c) connect
and disconnect from the system, the GROUPCOMPONENT
interacts with DIARC’s central registry node to receive
notifications of those connections/disconnections. When a
component connects, that component is initialized with a
group identifier (e.g. ROBOTA or ROBOTB) that indicates
what physical robot it is a part of. Given a set of distributed
components (C), the GROUPCOMPONENT uses these group
identifiers to partition C into r component groups G0, ..., Gr

where G = c0, ..., cn. Each component group represents the

set of n components that comprise a single physical robot.
Using this information, we are then able to summarize the
capabilities provided by the components associated with each
robot, and visualize that information through CLSTR.

B. Design

In this section, we discuss the design of multiple versions
of the CLSTR robot architecture visualization. To help
operators quickly identify which robots are available for
tasking and what those available robots can be tasked to
do, we aimed to provide operators with a visual summary
of the members of a robot team, and the capabilities of each
of those robots. Based on design recommendations by Oury
and Ritter [3], CLSTR was designed to present this summary
in such a way that is “readily available, easily interpretable,
appropriately prominent, and simple enough for the typical
user”.

To be readily available and appropriately prominent,
CLSTR was designed as as compact side-panel for an ex-
isting tasking interface, thus providing a persistent summary
of the robot team that updates whenever team changes occur
(e.g., robot components connect and disconnect). With such
a summary, operators can avoid having to actively switch



their attention between multiple interface views to focus on
different robots.

To be easily interpretable and simple enough for the typi-
cal user, CLSTR was designed to use contrasting colors and
representative icons. Contrasting colors were used to help
operators easily differentiate between different component
groups associated with different physical robots, and icons
were used to represent different robot capabilities to help
users easily identify each robot’s current capabilities [23].
For instance, an icon of a camera silhouette can be used to
indicate that a robot has a vision-based sensing ability. This
use of icons is similar to Seo et al. [19]’s use of emojis in
which simple representations are used to reduce the cognitive
processing needed to interpret information about robots.
Overall, these design choices were used to summarize robot
team information in a simple and organized way to support
operators in maintaining an appropriate level of situational
awareness over a robot team.

Two versions of our CLSTR visualization are shown in
Figures 1a and 1b, each of which shows information about
four robots (Robot A, B, C, D). These visualizations are
updated anytime robot components connect and disconnect.
When a component connects, a new icon is added under the
relevant component group. As such, Figures 1a and 1b both
show that each robot has four different available capabilities,
as shown by the different component group colors and set
of icons. When a component disconnects, this is visualized
in one of two ways, as we will now describe.

Figure 1a shows our first version of CLSTR (CLSTR1),
which visualizes disconnections using a similar design
pattern as DIARC’s default architectural visualization. As
shown in Figure 1c, DIARC’s default visualization is a
component graph that represents the architecture’s state as
a set of nodes (one for each architectural component),
with lines connecting those nodes representing connections
between components. In this visualization, when a compo-
nent disconnects, that component is removed entirely from
the graph. Similarly, in our CLSTR1 visualization, when
a component disconnects, the associated icon is removed.
However, this design only shows to operators the available
robot capabilities, possibly making it difficult for operators
to realize and remember that something changed among
the robot team. As such, we designed a second version of
CLSTR (CLSTR2) in which, when a component disconnects,
the associated icon is instead crossed out and labeled as
unavailable to indicate that a particular capability is no longer
available. This second design was intended to clearly present
information about both currently available and no-longer-
available robot capabilities.

III. EVALUATION

To evaluate CLSTR, we conducted an IRB-approved on-
line human-subjects study on the Prolific survey platform,
in which participants watched videos of our CLSTR visual-
ization and DIARC’s component graph while completing a
secondary task.

This experiment was designed to test two key hypotheses:

• H1: CLSTR will enable operators to more accurately
recognize changes to a robot team than DIARC’s com-
ponent graph.

• H2: CLSTR2 will enable operators to more accurately
recognize component disconnections than CLSTR1.

A. Experimental Design and Procedure

This study followed a mixed factorial design with visu-
alization type (CLSTR vs DIARC’s component graph) and
scenario as within subjects, and CLSTR version (CLSTR1
vs CLSTR2) as a between-subjects variable. As such, each
participant was shown videos of DIARC’s component graph
and of either CLSTR1 or CLSTR2. Videos were counterbal-
anced to vary the order in which they were shown.

After providing informed consent and demographic in-
formation, participants performed six rounds of an article
counting task in which participants counted the number of
instances of the letter ‘a’ within a text paragraph. This
task has been used in previous Human-Robot Interaction
experiments to split participant’s attention away from a
monitored robot [24], [25]. As such, in this work we used
this same task to split participants’ attention away from
videos of either CLSTR or DIARC’s component graph. In
these visualization videos, robot components were shown
connecting and disconnecting based on the scenarios detailed
in Section III-B. Of the six rounds watched by participants,
three rounds included a video of CLSTR, and three rounds
included a video of DIARC’s component graph.

In each round, participants performed an article counting
task while a video of CLSTR or DIARC’s component graph
was shown in a side panel. Participants were instructed to
passively attend to changes within the video while com-
pleting their counting task. Each video was about 1 minute
in length and was unable to be replayed. When the video
finished playing, participants were asked to indicate the
number of instances they had counted to ensure they had
been performing the counting task. Participants were then
asked awareness questions about the visualization video
shown. These questions are detailed in Section III-C.

Once all rounds were completed, participants were asked
a final free response question: “Of the two [visualizations]
shown throughout this evaluation, which would you prefer
to track the components of multiple robots? Please write at
least 1-2 sentences to explain your answer.”

B. Scenario Design

For each of the two visualizations (CLSTR and DIARC’s
component graph), participants performed three rounds of the
task described above. During each of these rounds, a different
scenario involving a team of four robots was visualized in
the visualization panel. These three scenarios had increasing
levels of complexity.

1) Scenario 0: In the first round for each visualization, the
visualization video depicted a simple scenario in which one
new robot component connects and a different component
disconnects. This round was used as a practice round to
introduce participants to the relevant visualization. As such,



participant responses to the questions in these practice rounds
were not analyzed.

2) Scenario 1: Scenario 1 demonstrated one new robot
component connecting, and an entire robot disconnecting
(i.e. all components of the same component group discon-
nected), with the remaining two robots’ capabilities not
changing during the scenario.

3) Scenario 2: Scenario 2 demonstrated two new robot
components connecting and two robot components discon-
necting (following an alternating pattern between component
connections and disconnections), leaving the capabilities of
only one robot unchanged.

C. Measures

To assess the participant’s situational awareness during
each of these three scenarios, we presented participants with
the following awareness questions at the end of each round:

1) “During the video, how many components seem to
have disconnected from the interface?”

2) “During the video, how many new components seem
to have connected to the interface?”

3) “Which robots remained the same throughout the entire
video?”

Finally, participants were asked: “What difficulties did you
face with the interface during the round?”

D. Participants

123 participants were recruited from Prolific (54 male,
68 female, 1 non-binary). Participants ranged from 18 to
74 years old (M=35.358, SD=11.547). 62 participants were
shown videos of CLSTR1, 61 participants were shown videos
of CLSTR2, and all participants were shown videos of
DIARC.

E. Analysis

For each awareness question, accuracy was calculated
using the following formula:

100−
(
|ObservedV alue−ActualV alue|

ActualV alue
∗ 100

)
A Bayesian statistical analysis was then conducted on

anonymized data using the JASP statistical software [26].
This analysis was comprised of a set of Repeated-Measures
(RM) ANOVAs with Bayes Factor (BF) Analyses. Specifi-
cally, Inclusion BFs across Matched Models [27], [28] were
calculated through Bayesian Model Averaging. The Inclu-
sion BFs produced by this approach represent the strength
of evidence in favor of models including each candidate
main effect or interaction effect. All BFs reported for RM-
ANOVAs are thus BFIncl10 , i.e., Inclusion BFs representing
the odds ratio of evidence in favor of an effect (H1) versus
evidence against an effect (H0). To discuss these results,
we use the linguistic interpretations of reported BFs as
recommended by JASP reporting guidelines [29]. For all
analyses, when evidence for an effect could not be ruled out
(BF>0.333), the results were further analyzed using post-hoc
Bayesian t-tests.

To test our hypotheses, each measure was analyzed with
two Bayesian RM-ANOVAs. To compare CLSTR and DI-
ARC’s component graph, the first RM-ANOVA included
visualization type and scenario as repeated measures factors.
To compare CLSTR1 and CLSTR2, the second RM-ANOVA
included scenario as a repeated measures factor and visual-
ization type as a between subjects factor.

All study videos, data, and analysis scripts are available
via the Open Science Framework at https://osf.io/
hbr2n/.

IV. RESULTS

In this section, we describe the results of the analyses
described above.

A. CLSTR vs DIARC’s Component Graph

1) Component Disconnects: Moderate evidence was
found in favor of an effect of visualization on disconnect
accuracy (BF=3.858). This result indicates that participants
more accurately indicated the number of component discon-
nects with CLSTR (M=60.501, SD=35.321) than with DI-
ARC’s component graph (M=50.678, SD=28.761) regardless
of scenario. This provides evidence for H1.

Moderate evidence was found against an effect of scenario
on disconnect accuracy (BF=0.179). This result suggests that
scenario alone did not influence how accurately participants
indicated the number of component disconnects.

Anecdotal evidence was found against an interaction ef-
fect between visualization and scenario disconnect accuracy
(BF=0.814). Post-hoc t-tests indicated moderate evidence
against a difference in disconnect accuracy between CLSTR
and DIARC’s component graph in Scenario 1 (BF=0.286),
but strong evidence in favor of such a difference in Scenario
2 (BF=23.544). As shown in Figure 2a, these results indicate
that in Scenario 1 participants performed similarly with
both visualizations, while in Scenario 2 participants more
accurately indicated the number of component disconnects
with CLSTR (M=64.634, SD=45.598) than with DIARC’s
component graph (M=49.593, SD=40.739).

2) Component Connects: Strong evidence was found in
favor of an effect of visualization on connect accuracy
(BF=12.269). This result indicates that participants more
accurately indicated the number of component connects with
CLSTR (M=49.593, SD=51.413) than with DIARC’s com-
ponent graph (M=29.065, SD=64.606) regardless of scenario.
This provides evidence for H1.

Very strong evidence was found in favor of an effect
of scenario on connect accuracy (BF=32.522). This result
indicates that participants more accurately indicated the
number of component connects in Scenario 2 (M=51.829,
SD=33.750) than in Scenario 1 (M=26.829, SD=80.798)
regardless of visualization.

Strong evidence was found in favor of an interaction
effect between visualization and scenario on connect ac-
curacy (BF=29.100). As shown in Figure 2b, these results
indicate that in Scenario 1 participants more accurately indi-
cated the number of component connects with CLSTR (M=



(a) Component Disconnects (b) Component Connects (c) Robots that Remained the Same

Fig. 2: Accuracy comparison between DIARC’s component graph and CLSTR. In all figures, error bars represent 95%
credible interval.

46.341, SD= 84.245) than with DIARC’s component graph
(M=7.317, SD=115.355), while in Scenario 2 participants
performed similarly with both visualizations.

3) Robots that Remained the Same: Extreme evidence
was found in favor of an effect of visualization on par-
ticipant ability to identify which robots had not changed
during each round (BF=2.382x1020). As shown in Fig-
ure 2c, these results indicate that participants more accurately
indicated which robots remained the same with CLSTR
(M=82.114, SD=19.010) than with DIARC’s component
graph (M=57.114, SD=15.274) regardless of scenario. This
provides evidence for H1.

Moderate evidence was found against an effect of sce-
nario (BF=0.190) and against an interaction effect between
visualization and scenario (BF=0.150). These results suggest
that scenario did not influence how accurately participants
indicated which robots remained the same.

Fig. 3: Disconnect accuracy comparison between CLSTR
versions.

B. CLSTR1 vs CLSTR2

1) Component Disconnects: Moderate evidence was
found in favor of an effect of CLSTR version on disconnect
accuracy (BF=5.632). As shown in Figure 3, these results
indicate that participants more accurately indicated the num-
ber of component disconnects with CLSTR2 (M=68.952,

SD=37.728) than with CLSTR1 (M= 51.913, SD=30.671)
regardless of scenario. This provides evidence for H2.

Anecdotal evidence was found against an effect of scenario
on disconnect accuracy (BF=0.880). This result indicates that
there may be an effect of scenario, but more data would be
needed to support or rule out this effect.

Moderate evidence was found against an interaction effect
between CLSTR version and scenario on disconnect accu-
racy (BF=0.174).

2) Component Connects: Anecdotal evidence was found
against an effect of CLSTR version on connect accuracy
(BF=0.386). This result suggests that there may be an effect
of CLSTR version, but more data would be needed to support
or rule out this effect.

Moderate evidence was found against an effect of scenario
on connect accuracy (BF=0.198). This result suggests that
scenario alone did not influence how accurately participants
indicated the number of component connects.

Anecdotal evidence was found in favor of an interaction
effect between CLSTR version and scenario on connect
accuracy (BF=1.288). Post-hoc t-tests indicated anecdotal
evidence against a difference in connect accuracy in Scenario
1 between CLSTR versions (BF=0.807), and moderate evi-
dence against a difference in connect accuracy in Scenario 2
between CLSTR versions (BF=0.203). These results suggest
that there may be an interaction effect between CLSTR
version and scenario on connect accuracy, but more data
would be needed to support or rule out this effect.

3) Robots that Remained the Same: Moderate evidence
was found against an effect of CLSTR version on participant
ability to identify which robots had not changed during each
round (BF=0.287). Moderate evidence was found against
an effect of scenario (BF=0.168). Moderate evidence was
found against an interaction effect between CLSTR version
and scenario (BF=0.231). Overall, these results indicate that
when it comes to indicating which robots remained the
same, participants performed similarly regardless of CLSTR
version or scenario.



C. Participant Feedback

Overall, participants indicated a greater preference for
CLSTR than DIARC’s component graph for tracking the
components of multiple robots (100 participants preferred
CLSTR, 18 preferred DIARC’s component graph, 5 preferred
both for different instances). Participants indicated that with
CLSTR, it was easier to process and distinguish between
component groups because of the visual grouping and colors.
CLSTR was also described as being easier for deciphering
what changes happened in the different scenarios. Whereas,
with DIARC’s component graph, participants indicated hav-
ing difficulty identifying whether a component connected or
disconnected as it was hard to track the moving graph lines
and read component labels.

However, some participants found DIARC’s component
graph to be more helpful in noticing when a change hap-
pened. For instance, one participant commented “The move-
ment of [DIARC] was distinguishable even in my peripheral
field of vision. I felt like it made it easier to know that a
change was occurring. As far as noticing overall changes
after the video, I think [CLSTR] is more efficient at being
able to identify if components were removed.”

V. DISCUSSION

Overall, our results clearly supported hypotheses 1 and 2.
Our results indicate that CLSTR can more effectively

provide information about changes within a robot team. In
particular, we found that our organized summary of robot
capabilities through icon representations made it easier for
participants to determine what changes occurred (number
of disconnects and connects) among a robot team as well
as what robots remained unchanged. This suggests that
this type of visualization of robot capabilities can improve
situational awareness for operators through its presentation
of simple and easily interpretable information about a robot
team. Moreover, we found that “crossing out” disconnected
components in CLSTR2 can more effectively ensure that
participants notice and understand that a change occurred
than with CLSTR1’s visualization.

While CLSTR more effectively provided robot team infor-
mation than DIARC’s component graph, some participants
noted how the use of motion within a visualization (such as
changing graph segments) can be helpful in realizing when a
change in a robot team occurs. This motion was indicated as
being particularly important when participants were engaged
in a secondary task, as the motion helped redirect their
attention to changes occurring within the robot team. This
suggests that including dynamic elements into visualizations
could be beneficial in monitoring a robot team. Similarly,
other cues like sound can also be paired with visualizations to
help shift an operator’s attention to particular changes among
a robot team [30].

Although the use of visualizations like icons and motion
can help support situational awareness over a robot team,
interface designers must balance the use of these design
cues to avoid overloading an operator’s visual processing.
For instance, interface designers may want to avoid the use

of too many icons as this may simply increase the number
of elements operators need to keep track of and understand.
Similarly, interface designers may also want to avoid the
inclusion of too many animations that may distract from
important elements or increase the difficulty of interpreting
visualizations.

Overall, our findings suggest that effective methods for
tracking the availability of a dynamic robot team should
include visual strategies that enhance both the detection of
robot team changes and the timing of those changes.

A. Limitations and Future Work

Although our participants viewed scenarios based on real-
world multi-robot systems, participants were not familiarized
with the details of the robot teams depicted in those visu-
alizations. As such, it may be valuable in future work to
debrief participants on what robot component/capability is
represented by which icons. If participants were debriefed
in this way, this would provide an opportunity to better
assess participants’ recognition of which components have
changed. And, since the appearance of the icons may need to
vary across different task contexts, these future participants
could provide feedback on which type of icons best represent
different robot capabilities in specific contexts.

Moreover, to evaluate CLSTR in a way that provides
increased ecological validity, future work may examine
CLSTR’s performance in contexts where participants are
actively taking part in robot tasking rather than the highly
controlled article counting task used in this work.

VI. CONCLUSION

In this work, we introduce CLSTR, a new visualization
for supporting operators to maintain an appropriate level
of situational awareness over the capabilities of a dynamic
robot team through simple icon visualizations. Through an
online human-subject study evaluating our design, we found
that CLSTR is able to better maintain operators’ situational
awareness of the changes occurring within a robot team,
especially when using CLSTR2’s method of visualizing
recently disconnected components. Moreover, our results
demonstrate aspects of older visualizations (e.g., salient
motions) that may further enhance operators’ situational
awareness. Overall, our results provide clear guidance for
how robot architecture designers can develop interfaces that
allow users of those architectures to maintain high situational
awareness about the state of the robots comprising those
architectures.
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